Saturday 9 December 2017

Glidande medelvärde prognos exempel


OR-Notes är en serie inledande anteckningar om ämnen som faller under den breda rubriken inom forskningsverksamhetsområdet (OR). De användes ursprungligen av mig i en introduktionskurs eller kurs jag ger vid Imperial College. De är nu tillgängliga för användning av studenter och lärare som är intresserade av ELLER med förbehåll för följande villkor. En fullständig lista över ämnena som finns i OR-Notes finns här. Prognosprognoser Prognosexempel 1996 UG-examen Efterfrågan på en produkt i vart och ett av de senaste fem månaderna visas nedan. Använd ett tvåmånaders glidande medelvärde för att generera en prognos för efterfrågan i månad 6. Applicera exponentiell utjämning med en utjämningskonstant på 0,9 för att generera en prognos för efterfrågan på efterfrågan i månad 6. Vilken av dessa två prognoser föredrar du och varför De två månaderna rör sig genomsnittet för månaderna två till fem ges av: Prognosen för månad sex är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månad 5 m 5 2350. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,9 får vi: Som tidigare prognosen för månad sex är bara genomsnittet för månad 5 M 5 2386 För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi att för det glidande medelvärdet MSD (15-19) sup2 (18-23) sup2 (21-24) sup23 16,67 och för exponentiellt jämnt medelvärde med en utjämningskonstant på 0,9 MSD (13-17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Totalt sett ser vi att exponentiell utjämning tycks ge de bästa månadens framåtprognoser eftersom den har en lägre MSD. Därför föredrar vi prognosen för 2386 som har producerats genom exponentiell utjämning. Prognosexempel 1994 UG-examen Tabellen nedan visar efterfrågan på en ny aftershave i en butik för var och en av de senaste 7 månaderna. Beräkna ett två månaders glidande medelvärde för månader två till sju. Vad är din prognos för efterfrågan i månad åtta Applicera exponentiell utjämning med en utjämningskonstant på 0,1 för att få en prognos för efterfrågan i månad åtta. Vilken av de två prognoserna för månad åtta föredrar du och varför Butiksinnehavaren anser att kunderna byter till den nya efterhäftet från andra märken. Diskutera hur du kan modellera detta kopplingsbeteende och ange vilka data du behöver för att bekräfta om den här växlingen sker eller inte. Det tvåmånadersrörande genomsnittet för månaderna två till sju är givet av: Prognosen för månad åtta är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månaden 7 m 7 46. Tillämpning av exponentiell utjämning med en utjämningskonstant av 0,1 vi få: Som före prognosen för månad åtta är bara medeltalet för månaden 7 M 7 31,11 31 (eftersom vi inte kan ha fraktionell efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant av 0,1. Totalt ser vi att det tvåmånaders glidande medlet verkar ge de bästa månadens framåtprognoser, eftersom det har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av två månaders glidande medelvärde. För att undersöka omkoppling skulle vi behöva använda en Markov-processmodell, där staternas varumärken och vi skulle behöva initiala statsinformation och kundbyte sannolikheter (från undersökningar). Vi skulle behöva springa modellen på historiska data för att se om vi har en passform mellan modellen och det historiska beteendet. Prognosexempel 1992 UG-examen Tabellen nedan visar efterfrågan på ett visst märke rakhyvel i en butik för var och en av de senaste nio månaderna. Beräkna ett tre månaders glidande medelvärde i månader tre till nio. Vad är din prognos för efterfrågan i månaden tio. Applicera exponentiell utjämning med en utjämningskonstant på 0,3 för att få en prognos för efterfrågan i månad tio. Vilken av de två prognoserna för tio månad föredrar du och varför Det tre månaders glidande medeltalet för månaderna 3 till 9 ges av: Prognosen för månad 10 är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månaden 9 m 9 20,33. Därför (eftersom vi inte kan få fraktsubjekt) är prognosen för månad 10 20. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,3 får vi: Som tidigare är prognosen för månad 10 bara genomsnittet för månaden 9 M 9 18,57 19 (som vi kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant på 0,3 Totalt ser vi att tre månaders glidande medelvärde verkar ge de bästa månadens framåtprognoser eftersom den har en lägre MSD. Därför föredrar vi prognosen på 20 som har producerats av tre månaders glidande medelvärde. Prognos exempel 1991 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av faxapparat i ett varuhus under de senaste tolv månaderna. Beräkna det fyra månaders glidande genomsnittet för månaderna 4 till 12. Vad skulle vara din prognos för efterfrågan i månad 13 Applicera exponentiell utjämning med en utjämningskonstant på 0,2 för att få en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månaden 13 föredrar du och varför Vilka andra faktorer som inte beaktas i ovanstående beräkningar kan påverka efterfrågan på faxen i månad 13 Det fyra månaders glidande genomsnittet för månaderna 4 till 12 ges av: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Prognosen för månad 13 är bara det rörliga genomsnittet för månaden före det vill säga det glidande genomsnittet för månad 12 m 12 46.25. Följaktligen (eftersom vi inte kan ha fraktiv efterfrågan) är prognosen för månad 13 46. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,2 får vi: Som tidigare är prognosen för månad 13 bara genomsnittet för månaden 12 M 12 38.618 39 (som vi kan inte ha fraktionerad efterfrågan). För att jämföra de två prognoserna beräknar vi den genomsnittliga kvadrerade avvikelsen (MSD). Om vi ​​gör det här finner vi det för glidande medelvärde och för exponentiellt jämnt medelvärde med en utjämningskonstant på 0,2 Totalt sett ser vi att det fyra månaders glidande genomsnittet tycks ge de bästa månadens framåtprognoser eftersom det har en lägre MSD. Därför föredrar vi prognosen på 46 som har producerats av fyra månaders glidande medelvärde. säsongsbetonad efterfrågan reklam prisändringar, både detta varumärke och andra märken Allmän ekonomisk situation Ny teknik Prognos exempel 1989 UG-examen Tabellen nedan visar efterfrågan på ett visst varumärke av mikrovågsugn i ett varuhus i var och en av de senaste tolv månaderna. Beräkna ett sex månaders glidande medelvärde för varje månad. Vad är din prognos för efterfrågan i månad 13. Applicera exponentiell utjämning med en utjämningskonstant på 0,7 för att få en prognos för efterfrågan i månad 13. Vilken av de två prognoserna för månad 13 föredrar du och varför Nu kan vi inte beräkna en sex månad flytta genomsnittet tills vi har minst 6 observationer - det kan vi bara beräkna ett så genomsnittligt från månad 6 framåt. Därför har vi: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Prognosen för månad 13 är bara det rörliga genomsnittet för månad före det vill säga det glidande genomsnittet för månaden 12 m 12 38,17. Därför (eftersom vi inte kan få fraktsubjekt) är prognosen för månad 13 38. Tillämpning av exponentiell utjämning med en utjämningskonstant på 0,7 får vi: En prognosberäkningsexempel A.1 Prognosberäkningsmetoder Tolv metoder för beräkning av prognoser är tillgängliga. De flesta av dessa metoder ger begränsad användarkontroll. Exempelvis kan vikten på senaste historiska data eller datumintervallet för historiska data som används i beräkningarna anges. Följande exempel visar beräkningsförfarandet för var och en av de tillgängliga prognosmetoderna, med en identisk uppsättning historiska data. Följande exempel använder samma försäljningsdata 2004 och 2005 för att producera en 2006-prognos för försäljning. Utöver prognosberäkningen innehåller varje exempel en simulerad 2005-prognos för en tre månaders hållbarhetsperiod (bearbetningsalternativ 19 3) som sedan används för procent av noggrannhet och genomsnittliga absoluta avvikelser (faktiska försäljningar jämfört med simulerad prognos). A.2 Prognos Prestationsutvärderingskriterier Beroende på ditt val av bearbetningsalternativ och de trender och mönster som finns i försäljningsdata, kommer vissa prognosmetoder att fungera bättre än andra för en viss historisk dataset. En prognosmetod som är lämplig för en produkt kanske inte är lämplig för en annan produkt. Det är också osannolikt att en prognostiseringsmetod som ger goda resultat i ett skede av en livscykel för produkterna kommer att förbli lämplig under hela livscykeln. Du kan välja mellan två metoder för att utvärdera nuvarande prestanda för prognosmetoderna. Dessa är genomsnittlig absolut avvikelse (MAD) och procent av noggrannhet (POA). Båda dessa prestationsbedömningsmetoder kräver historiska försäljningsdata för en angiven tidsperiod för användaren. Denna tidsperiod kallas en uthållningsperiod eller perioder som passar bäst (PBF). Uppgifterna under denna period används som utgångspunkt för att rekommendera vilken av prognosmetoderna som ska användas vid nästa prognosprojektion. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. De två prognosutvärderingsmetoderna visas på sidorna efter exempel på de tolv prognosmetoderna. A.3 Metod 1 - Specificerad procentsats under förra året Denna metod multiplicerar försäljningsdata från föregående år med en användardefinierad faktor till exempel 1,10 för en 10 ökning eller 0,97 för en 3 minskning. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus användarens specificerade antal tidsperioder för utvärdering av prognosprestanda (bearbetningsalternativ 19). A.4.1 Beräkning Beräkningsområde Försäljningshistorik som ska användas vid beräkning av tillväxtfaktor (behandlingsalternativ 2a) 3 i detta exempel. Summa de sista tre månaderna 2005: 114 119 137 370 Summa samma tre månader för föregående år: 123 139 133 395 Den beräknade faktorn 370395 0,9367 Beräkna prognoserna: januari 2005 försäljning 128 0,9367 119,8036 eller cirka 120 februari 2005 försäljning 117 0,9367 109,5939 eller cirka 110 mars 2005 försäljning 115 0,9367 107,7205 eller cirka 108 A.4.2 Simulerad prognosberäkning Summan av tre månaderna 2005 före uthållningsperioden (juli, augusti, september): 129 140 131 400 Summa samma tre månader för föregående år: 141 128 118 387 Den beräknade faktorn 400387 1.033591731 Beräkna simulerad prognos: oktober 2004 försäljning 123 1.033591731 127.13178 november 2004 försäljning 139 1.033591731 143.66925 december 2004 försäljning 133 1.033591731 137.4677 A.4.3 Procent av beräkningsberäkning POA (127.13178 143.66925 137.4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (127,13178 - 114 143,66925 - 119 137,4677-137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metod 3 - Förra året till det här året Denna metod kopierar försäljningsdata från föregående år till nästa år. Erforderlig försäljningshistorik: Ett år för beräkning av prognosen plus antal tidsperioder som anges för att utvärdera prognosprestanda (bearbetningsalternativ 19). A.6.1 Beräkning av prognos Antal perioder som ska ingå i genomsnittet (bearbetningsalternativ 4a) 3 i detta exempel För varje månad av prognosen, genomsnitt de tidigare tre månaderna data. Januari prognos: 114 119 137 370, 370 3 123 333 eller 123 februari prognos: 119 137 123 379, 379 3 126 333 eller 126 mars prognos: 137 123 126 379, 386 3 128 677 eller 129 A.6.2 Simulerad prognosberäkning Oktober 2005 försäljning 140 131) 3 133 33333 Försäljning i november 2005 (140 131 114) 3 128 33333 Försäljning i december 2005 (131 114 119) 3 121 33333 A.6.3 Procent av beräkningsberäkning POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Medel Absolut Avvikelseberäkning MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metod 5 - Linjär approximation Linjär approximation beräknar en trend baserad på två försäljningshistorikdatapunkter. Dessa två punkter definierar en rak trendlinje som projiceras in i framtiden. Använd denna metod med försiktighet, eftersom långdistansprognoser utnyttjas av små förändringar på bara två datapunkter. Erforderlig försäljningshistorik: Antalet perioder som ska inkluderas i regression (behandlingsalternativ 5a) plus 1 plus antal tidsperioder för utvärdering av prognosprestanda (bearbetningsalternativ 19). A.8.1 Beräkning av prognos Antal perioder som ska inkluderas i regression (behandlingsalternativ 6a) 3 i det här exemplet För varje månad av prognosen, lägg till ökningen eller minskningen under de angivna perioderna före hållbarhetsperioden föregående period. Medelvärde av de föregående tre månaderna (114 119 137) 3 123.3333 Sammanfattning av de föregående tre månaderna med hänsyn till (114 1) (119 2) (137 3) 763 Skillnad mellan värdena 763 - 123 3333 (1 2 3) 23 Förhållande 12 22 32) - 2 3 14 - 12 2 Värde1 SkillnadRatio 232 11,5 Värde2 Genomsnitt - värde1 förhållande 123.3333 - 11.5 2 100.3333 Prognos (1 n) värde1 värde2 4 11.5 100.3333 146.333 eller 146 Prognos 5 11.5 100.3333 157.8333 eller 158 Prognos 6 11.5 100.3333 169.3333 eller 169 A.8.2 Simulerad prognosberäkning Oktober 2004 Försäljning: Genomsnittet för de föregående tre månaderna (129 140 131) 3 133 3333 Sammanfattning av de föregående tre månaderna med hänsyn till (129 1) (140 2) (131 3) 802 Skillnad mellan värden 802 - 133.3333 (1 2 3) 2 Förhållande (12 22 32) - 2 3 14 - 12 2 Värde1 DifferenceRatio 22 1 Värde2 Genomsnitt - värde1 förhållande 133.3333 - 1 2 131.3333 Prognos (1 n) värde1 värde2 4 1 131.3333 135.3333 November 2004 försäljning Genomsnittet för de tre föregående månaderna (140 131 114) 3 128 3333 Sammanfattning av de föregående tre månaderna med hänsyn till (140 1) (131 2) (114 3) 744 Skillnad mellan värdena 744 - 128 3333 (1 2 3) -25,9999 Värde1 DiffferenceRatio -25.99992 -12.9999 Värde2 Genomsnitt - värde1-förhållande 128.3333 - (-12.9999) 2 154.3333 Prognos 4 -12.9999 154.3333 102.3333 december 2004 Försäljning Genomsnitt av de föregående tre månaderna (131 114 119) 3 121.3333 Sammanfattning av de föregående tre månaderna med hänsyn tagen ( 131 1) (114 2) (119 3) 716 Skillnad mellan värdena 716 - 121.3333 (1 2 3) -11.9999 Värde1 SkillnadRatio -11.99992 -5.9999 Värde2 Genomsnitt - värde1 förhållande 121.3333 - (-5.9999) 2 133.3333 Prognos 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Procent av noggrannhetsberäkning POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Metod 7 - Secon d Grad approximation Linjär regression bestämmer värdena för a och b i prognosformeln Y a bX med målet att anpassa en rak linje till försäljningshistorikdata. Andra grader Approximation är liknande. Denna metod bestämmer emellertid värdena för a, b och c i prognosformeln Y a bX cX2 med målet att anpassa en kurva till försäljningshistorikdata. Denna metod kan vara användbar när en produkt är i övergången mellan stadierna i en livscykel. Till exempel, när en ny produkt flyttar från introduktion till tillväxtstadier, kan försäljningsutvecklingen accelereras. På grund av den andra orderperioden kan prognosen snabbt närma sig oändligheten eller släppa till noll (beroende på om koefficienten c är positiv eller negativ). Därför är denna metod endast användbar på kort sikt. Prognosspecifikationer: Formlerna finner a, b och c för att passa en kurva till exakt tre punkter. Du anger n i bearbetningsalternativet 7a, antalet tidsperioder för data som ackumuleras i var och en av de tre punkterna. I detta exempel n 3. Därför kombineras faktiska försäljningsdata för april till juni i första punkten, Q1. Juli till september läggs samman för att skapa Q2 och oktober till december summa till Q3. Kurvan kommer att monteras på de tre värdena Q1, Q2 och Q3. Erforderlig försäljningshistorik: 3 n perioder för beräkning av prognosen plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). Antal perioder som ska inkluderas (behandlingsalternativ 7a) 3 i detta exempel Använd de föregående (3 n) månaderna i tre månaders block: Q1 (april-juni) 125 122 137 384 Q2 (jul-september) 129 140 131 400 Q3 Okt-dec) 114 119 137 370 Nästa steg innefattar att beräkna de tre koefficienterna a, b och c som ska användas i prognosformeln Y a bX cX2 (1) Q1 en bX cX2 (där X1) abc (2) Q2 en bX cX2 (där X2) en 2b 4c (3) Q3 en bX cX2 (där X3) a 3b 9c Lös de tre ekvationerna samtidigt för att hitta b, a och c: Subtrahera ekvation (1) från ekvation (2) och lösa för b (2) - (1) Q2 - Q1 b 3c Ersätt denna ekvation för b till ekvation (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Äntligen ersätt dessa ekvationer för a och b till ekvation (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1c (Q3 - Q2) (Q1 - Q2) 2 Den andra graden approximationsmetoden beräknar a, b och c enligt följande: en Q3 - 3 (Q2-Q1) 370-3 (400-384) 322 c (Q3-Q2) (Q1-Q2) 2 (370-400) (384-400) 2 -23 b (Q2-Q1) - 3c (400-384) - (3-23) 85 Y a bX cX2 322 85X (-23) X2 januari till marsprognos (X4): (322 340 - 368) 3 2943 98 per period april till juni prognos (X5): (322 425 - 575) 3 57 333 eller 57 per period juli till september prognos (X6): (322 510 - 828) 3 1,33 eller 1 per period oktober till december (X7) 595 - 11273 -70 A.9.2 Simulerad prognosberäkning Oktober, november och december 2004 Försäljning: Q1 (jan-mar) 360 Q2 (april-juni) 384 Q3 (jul-sep) 400 a 400-3 (384-360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Procent av beräkningsberäkning POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Genomsnittlig avvikelseberäkning MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Metod 8 - Flexibel metod Den flexibla metoden (Procent över en månad före) liknar Metod 1, procent över fjolåret. Båda metoderna multiplicerar försäljningsdata från en tidigare tidsperiod av en användardefinierad faktor och sedan projektet som resultat i framtiden. I Procenten över senaste årmetoden är projiceringen baserad på data från samma period föregående år. Den flexibla metoden lägger till förmågan att ange en annan tidsperiod än samma period förra året för att användas som underlag för beräkningarna. Multiplikationsfaktor. Ange till exempel 1,15 i bearbetningsalternativet 8b för att öka tidigare försäljningshistorikdata med 15. Basperiod. Till exempel kommer n 3 att göra att den första prognosen baseras på försäljningsdata i oktober 2005. Minimal försäljningshistorik: Användaren specificerade antal perioder tillbaka till basperioden plus antalet tidsperioder som krävs för att utvärdera prognosprestandan ( PBF). A.10.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metod 9 - Vägt Flyttande Medeltal Den Vägda Flyttande Genomsnittsmetoden (WMA) liknar Metod 4, Flyttande medelvärde (MA). Men med det vägda rörliga genomsnittsvärdet kan du tilldela ojämna vikter till historiska data. Metoden beräknar ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Nyare data tilldelas vanligtvis en större vikt än äldre data, så det gör WMA mer mottagligt för skift i försäljningsnivån. Men prognosfel och systematiska fel uppstår fortfarande när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter snarare än för produkter i livscykelns tillväxt eller fördjupning. n antalet försäljningsperioder som ska användas i prognosberäkningen. Ange till exempel n 3 i bearbetningsalternativet 9a för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Ett stort värde för n (som 12) kräver mer försäljningshistoria. Det resulterar i en stabil prognos, men kommer att vara långsam för att känna igen skift i försäljningsnivån. Å andra sidan kommer ett litet värde för n (som 3) att reagera snabbare på förändringar i försäljningsnivån, men prognosen kan fluktuera så mycket att produktionen inte kan svara på variationerna. Den vikt som tilldelas var och en av de historiska dataperioderna. De tilldelade vikterna måste uppgå till 1,00. Till exempel, när n 3, tilldela vikter på 0,6, 0,3 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Metod 10 - Linjär utjämning Denna metod liknar Metod 9, Viktat rörande medelvärde (WMA). I stället för att godtyckligt tilldela vikter till historiska data används en formel för att tilldela vikter som faller linjärt och summan till 1,00. Metoden beräknar sedan ett vägt genomsnitt av den senaste försäljningshistoriken för att komma fram till en prognos på kort sikt. Såsom är sant för alla linjära glidande medelprognostekniker förekommer prognosfel och systematiska fel när produktförsäljningshistoriken uppvisar stark trend eller säsongsmönster. Denna metod fungerar bättre för kortvariga prognoser för mogna produkter snarare än för produkter i livscykelns tillväxt eller fördjupning. n antalet försäljningsperioder som ska användas i prognosberäkningen. Detta anges i bearbetningsalternativet 10a. Ange till exempel n 3 i bearbetningsalternativet 10b för att använda de senaste tre perioderna som utgångspunkt för projiceringen till nästa tidsperiod. Systemet kommer automatiskt att tilldela vikterna till historiska data som minskar linjärt och summerar till 1,00. Till exempel, när n 3, kommer systemet att tilldela vikter på 0,5, 0,3333 och 0,1, med den senaste data som tar emot största vikt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.12.1 Prognosberäkning Antal perioder som ska inkluderas i utjämningsgenomsnitt (behandlingsalternativ 10a) 3 i detta exempel Förhållande för en period före 3 (n2 n) 2 3 (32 3) 2 36 0,5 Förhållande för två perioder före 2 (n2 n ) 2 2 (32 3) 2 26 0,3333 .. Förhållande för tre perioder före 1 (n2 n) 2 1 (32 3) 2 16 0,166 .. Januari prognos: 137 0,5 119 13 114 16 127,16 eller 127 februari prognos: 127 0,5 137 13 119 16 129 Marsprognos: 129 0,5 127 13 137 16 129 666 eller 130 A.12.2 Simulerad prognosberäkning Oktober 2004 Försäljning 129 16 140 26 131 36 133,6666 Försäljning november 2004 140 16 131 26 114 36 124 december 2004 Försäljning 131 16 114 26 119 36 119.3333 A.12.3 Procent av beräkningsberäkning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metod 11 - Exponentiell utjämning Denna metod liknar metod 10, linjär utjämning. Vid linjär utjämning tilldelar systemet vikter till historiska data som avtar linjärt. Vid exponentiell utjämning tilldelar systemet vägar som exponentiellt sönderfall. Exponential utjämning prognos ekvation är: Prognos a (Tidigare verklig försäljning) (1-a) Föregående Prognos Prognosen är ett vägt genomsnitt av den faktiska försäljningen från föregående period och prognosen från föregående period. a är vikten på den faktiska försäljningen för föregående period. (1 - a) är vikten av prognosen för föregående period. Giltiga värden för ett intervall från 0 till 1, och vanligtvis faller mellan 0,1 och 0,4. Summan av vikterna är 1,00. a (1 - a) 1 Du bör tilldela ett värde för utjämningskonstanten, a. Om du inte tilldelar värden för utjämningskonstanten, beräknar systemet ett antaget värde baserat på antalet försäljningsperioder som anges i bearbetningsalternativet 11a. en utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för ett intervall från 0 till 1. n sortimentet av försäljningshistorikdata som ingår i beräkningarna. Ett år med försäljningshistorikdata är i allmänhet tillräcklig för att uppskatta den allmänna försäljningsnivån. För detta exempel valdes ett litet värde för n (n 3) för att minska de manuella beräkningar som krävs för att verifiera resultaten. Exponentiell utjämning kan generera en prognos baserad på så lite som en historisk datapunkt. Minimikrav på försäljningshistorik: n plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). A.13.1 Prognosberäkning Antal perioder som ska inkluderas i utjämningsgenomsnitt (bearbetningsalternativ 11a) 3 och alfaktor (bearbetningsalternativ 11b) tom i detta exempel en faktor för äldsta försäljningsdata 2 (11) eller 1 när alfabet specificeras en faktor för den 2: e äldsta försäljningsdata 2 (12), eller alf när alpha anges en faktor för den 3: e äldsta försäljningsdata 2 (13), eller alf när alpha anges en faktor för den senaste försäljningsdata 2 (1n) , eller alfa när alpha är specificerat november sm. Avg. a (oktober faktiskt) (1 - a) oktober sm. Avg. 1 114 0 0 114 december Sm. Avg. a (november faktiskt) (1 - a) november sm. Avg. 23 119 13 114 117.3333 januari prognos a (december faktiskt) (1 - a) december sm. Avg. 24 137 24 117.3333 127.16665 eller 127 februari Prognos januari prognos 127 mars prognos januari prognos 127 A.13.2 simulerad prognosberäkning juli 2004 sm. Avg. 22 129 129 augusti Sm. Avg. 23 140 13 129 136.3333 September Sm. Avg. 24 131 24 136 3333 133,6666 oktober 2004 försäljning sep sm. Avg. 133.6666 augusti, 2004 Sm. Avg. 22 140 140 september Sm. Avg. 23 131 13 140 134 oktober Sm. Avg. 24 114 24 134 124 november 2004 försäljning sep sm. Avg. 124 september 2004 Sm. Avg. 22 131 131 oktober Sm. Avg. 23 114 13 131 119,6666 November Sm. Avg. 24 119 24 119,6666 119,3333 december 2004 försäljning sep sm. Avg. 119.3333 A.13.3 Procent av noggrannhetsberäkning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Genomsnittlig Absolut Avvikelse Beräkning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metod 12 - Exponentiell utjämning med trend och säsonglighet Denna metod liknar metod 11, exponentiell utjämning genom att ett jämnt medelvärde beräknas. Metod 12 innehåller emellertid också en term i prognosekvationen för att beräkna en jämn trend. Prognosen består av en jämn genomsnittlig justering för en linjär trend. När det anges i bearbetningsalternativet justeras prognosen också för säsongsmässigt. en utjämningskonstanten som används vid beräkning av det jämnformade genomsnittet för den allmänna nivån eller storleken på försäljningen. Giltiga värden för alfabetik från 0 till 1. b utjämningskonstanten som används vid beräkning av det jämnde genomsnittet för prognosens trendkomponent. Giltiga värden för betavärde från 0 till 1. Om ett säsongsindex används för prognos a och b är oberoende av varandra. De behöver inte lägga till 1,0. Minimikrav på försäljningshistoria: två år plus antal tidsperioder som krävs för att utvärdera prognosprestandan (PBF). Metod 12 använder två exponentiella utjämningsekvationer och ett enkelt medelvärde för att beräkna ett jämnt medelvärde, en jämn trend och en enkel genomsnittlig säsongsfaktor. A.14.1 Prognosberäkning A) Ett exponentialt jämnat medelvärde (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Utvärdering av prognoserna Du kan välja prognosmetoder för att generera så många som tolv prognoser för varje produkt. Varje prognosmetod kommer sannolikt att skapa en något annorlunda projicering. När tusentals produkter prognostiseras är det opraktiskt att göra ett subjektivt beslut om vilka av prognoserna som ska användas i dina planer för var och en av produkterna. Systemet utvärderar automatiskt prestanda för var och en av de prognosmetoder du väljer och för varje prognos för produkterna. Du kan välja mellan två prestandakriterier, Mean Absolute Deviation (MAD) och Procent Accuracy (POA). MAD är ett mått på prognosfel. POA är ett mått på prognosförskjutning. Båda dessa prestandautvärderingstekniker kräver faktiska försäljningshistorikdata för en användarens specificerade tidsperiod. Den här historiska perioden kallas en hållbarhetstid eller perioder som passar bäst (PBF). För att mäta resultatet av en prognostiseringsmetod, använd prognosformlerna för att simulera en prognos för historisk uthållighetsperiod. Det kommer vanligtvis att finnas skillnader mellan faktiska försäljningsdata och den simulerade prognosen för hållbarhetsperioden. När flera prognosmetoder väljs utförs samma process för varje metod. Flera prognoser beräknas för hållbarhetsperioden och jämförs med den kända försäljningshistoriken för samma tidsperiod. Prognosmetoden som ger den bästa matchningen (bästa passformen) mellan prognosen och den faktiska försäljningen under hållbarhetsperioden rekommenderas för användning i dina planer. Denna rekommendation är specifik för varje produkt och kan ändras från en prognosproduktion till nästa. A.16 Mean Absolute Deviation (MAD) MAD är medelvärdet (eller genomsnittet) av de absoluta värdena (eller storleken) av avvikelserna (eller fel) mellan aktuell och prognosdata. MAD är ett mått på den genomsnittliga storleksgraden av fel som kan förväntas, med en prognosmetod och datahistorik. Eftersom absoluta värden används i beräkningen avbryter inte positiva fel negativa fel. När man jämför flera prognosmetoder har den med den minsta MAD visat sig vara den mest tillförlitliga för den produkten under den perioden som hålls kvar. När prognosen är opartisk och fel distribueras normalt finns det ett enkelt matematiskt förhållande mellan MAD och två andra gemensamma fördelningsförhållanden, standardavvikelse och medelkvadratfel: A.16.1 Procent av noggrannhet (POA) Procent av noggrannhet (POA) ett mått på prognosförskjutning. När prognoserna är konsekventa för höga ackumuleras lager och lagerkostnader ökar. När prognoserna är konsekvent två låga förbrukas lager och kundservice minskar. En prognos som är 10 enheter för låg, då 8 enheter för höga, då 2 enheter för höga, skulle vara en objektiv prognos. Det positiva felet på 10 avbryts med negativa fel på 8 och 2. Fel Aktuell - Prognos När en produkt kan lagras i lager, och när prognosen är opartisk, kan en liten mängd säkerhetslager användas för att buffra felet. I den här situationen är det inte så viktigt att eliminera prognosfel eftersom det är att skapa objektiva prognoser. Men inom serviceindustrin skulle ovanstående situation ses som tre fel. Tjänsten skulle vara underbemannad under den första perioden, sedan överbemannade för de kommande två perioderna. I tjänster är storleken av prognosfel vanligtvis viktigare än vad som är prognostiserad bias. Sammanfattningen över hållbarhetsperioden tillåter positiva fel att avbryta negativa fel. När den totala faktiska försäljningen överstiger den totala prognostiserade försäljningen är förhållandet större än 100. Det är naturligtvis omöjligt att vara mer än 100 exakt. När en prognos är opartisk blir POA-förhållandet 100. Därför är det mer önskvärt att vara 95 exakt än att vara 110 exakt. POA-kriterierna väljer prognosmetoden som har ett POA-förhållande närmast 100. Scripting på denna sida förstärker innehållsnavigering, men ändrar inte innehållet på något sätt. I praktiken ger det glidande medelvärdet en bra uppskattning av medelvärdet av tiden serie om medelvärdet är konstant eller långsamt förändras. I händelse av ett konstant medelvärde kommer det största värdet av m att ge de bästa uppskattningarna av det underliggande genomsnittet. En längre observationsperiod kommer att medeltala effekterna av variationen. Syftet med att tillhandahålla en mindre m är att tillåta prognosen att svara på en förändring i den underliggande processen. För att illustrera föreslår vi en dataset som innehåller förändringar i underliggande medelvärden av tidsserierna. Figuren visar tidsserien som används för illustration tillsammans med den genomsnittliga efterfrågan från vilken serien genererades. Medelvärdet börjar som en konstant vid 10. Börjar vid tid 21 ökar den med en enhet i varje period tills den når värdet 20 vid tidpunkten 30. Då blir det konstant igen. Uppgifterna simuleras genom att lägga till i genomsnitt ett slumpmässigt brus från en normalfördelning med nollvärde och standardavvikelse 3. Resultaten av simuleringen avrundas till närmsta heltal. Tabellen visar de simulerade observationer som används för exemplet. När vi använder bordet måste vi komma ihåg att vid varje given tidpunkt endast endast tidigare data är kända. Uppskattningarna av modellparametern, för tre olika värden på m visas tillsammans med medelvärdet av tidsserierna i figuren nedan. Figuren visar den genomsnittliga rörliga genomsnittliga beräkningen av medelvärdet vid varje tidpunkt och inte prognosen. Prognoserna skulle flytta de glidande medelkurvorna till höger av perioder. En slutsats framgår omedelbart av figuren. För alla tre uppskattningar ligger glidande medelvärde bakom den linjära trenden, där fördröjningen ökar med m. Lagen är avståndet mellan modellen och uppskattningen i tidsdimensionen. På grund av fördröjningen underskattar det rörliga genomsnittet observationerna när medelvärdet ökar. Estimatorns förspänning är skillnaden vid en viss tid i modellens medelvärde och medelvärdet förutspått av det rörliga genomsnittet. Förspänningen när medelvärdet ökar är negativt. För ett minskande medelvärde är förspänningen positiv. Fördröjningen i tid och den bias som införs i uppskattningen är funktionerna i m. Ju större värdet av m. desto större är storleken på fördröjning och förspänning. För en kontinuerligt ökande serie med trend a. värdena för fördröjning och förspänning av estimatorn av medelvärdet ges i ekvationerna nedan. Exemplet kurvorna stämmer inte överens med dessa ekvationer eftersom exemplet modellen inte ökar kontinuerligt, utan det börjar som en konstant, ändras till en trend och blir sedan konstant igen. Även kurvorna påverkas av bruset. Den glidande genomsnittliga prognosen för perioder i framtiden representeras genom att man ändrar kurvorna till höger. Fördröjningen och förskjutningen ökar proportionellt. Ekvationerna nedan anger fördröjningen och förspänningen av prognosperioder i framtiden jämfört med modellparametrarna. Återigen är dessa formler för en tidsserie med en konstant linjär trend. Vi borde inte bli förvånad över resultatet. Den rörliga genomsnittliga estimatorn är baserad på antagandet om ett konstant medelvärde och exemplet har en linjär trend i medelvärdet under en del av studieperioden. Eftersom realtidsserier sällan exakt kommer att följa antagandena till en modell, borde vi vara beredda på sådana resultat. Vi kan också dra av slutsatsen att brusets variabilitet har störst effekt för mindre m. Uppskattningen är mycket mer flyktig för det glidande medlet på 5 än det glidande medlet på 20. Vi har de motstridiga önskningarna att öka m för att minska effekten av variationer på grund av bullret och att minska m för att göra prognosen mer mottaglig för förändringar i medelvärdet. Felet är skillnaden mellan den faktiska data och det prognostiserade värdet. Om tidsserierna verkligen är ett konstant värde är det förväntade värdet av felet noll och variansen av felet består av en term som är en funktion av och en andra term som är brusets varians. Den första termen är medelvärdet av det medelvärde som uppskattas med ett urval av m-observationer, förutsatt att data kommer från en population med konstant medelvärde. Denna term minimeras genom att göra m så stor som möjligt. En stor m gör prognosen inte svarande mot en förändring i underliggande tidsserier. För att prognosen ska kunna reagera på förändringar vill vi m vara så liten som möjligt (1), men detta ökar felvariationen. Praktisk prognos kräver ett mellanvärde. Prognoser med Excel Prognosen för prognoser implementerar de glidande medelformlerna. Exemplet nedan visar analysen som tillhandahålls av tillägget för provdata i kolumn B. De första 10 observationerna indexeras -9 till 0. Jämfört med tabellen ovan förskjuts periodens index med -10. De första tio observationerna ger startvärdena för uppskattningen och används för att beräkna det glidande medlet för period 0. MA (10) kolumnen (C) visar de beräknade glidande medelvärdena. Den rörliga genomsnittsparametern m är i cell C3. Fore (1) kolumnen (D) visar en prognos för en period framåt. Prognosintervallet ligger i cell D3. När prognosintervallet ändras till ett större antal, flyttas numren i Fore-kolumnen nedåt. Err-kolumnen (E) visar skillnaden mellan observationen och prognosen. Till exempel är observationen vid tidpunkten 1 6. Det prognostiserade värdet som gjorts från det glidande medlet vid tidpunkten 0 är 11,1. Felet är då -5,1. Standardavvikelsen och genomsnittlig avvikelse (MAD) beräknas i cellerna E6 respektive E7.

No comments:

Post a Comment